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Abstract

GeoFEM is solid earth simulator software, which is under development to
be used by STA’s super parallel computer, “Earth Simulator (GS40)”. Ge-
oFEM has already been used to analyze large-scale static linear problems
and wave propagation problems up to 108 degrees of freedom (DOF) and
demonstrated high performance computing ability by parallel processing. In
the present study, we focus on the wave propagation analysis of GeoFEM.
The report reviews formulation and parallel benchmark result briefly, then
describes installations of viscous boundary and real-time visualization system
(RVSLIB) to realize more efficient simulation. According to these extensions,
we can apply GeoFEM to more realistic seismic problem.

Introduction

GeoFEM[1] is parallel FEM code developed to simulate solid earth phenomena. In the present
study, to extend usability of GeoFEM wave propagation analysis function, we install viscous
boundary and real-time visualization system (RVSLIB) to GeoFEM. The former is to realize
non-reflecting boundary, and the latter is to handle huge output data from explicit dynamic
analysis.

Method for wave propagation analysis in GeoFEM

Applying the FEM to a discrete-space system, the equation of motion is expressed by mass
matrix [M ], dumping matrix [C ], internal force vector {p}(n), external force vector {f}(n),
displacement vector {u}(n), and its first and second order time derivation, velocity and ac-
celeration vector, {u̇}(n), {ü}(n) respectively (1). Here suffix (n) means at time t.

[M ]{ü}(n) + [C ]{u̇}(n) + {p}(n) = {f}(n) (1)

Equation of motion (1) can be rewrote by using central difference equation as following[2].
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In order to solve equation (2) explicitly, we transform the mass matrix [M ] and dumping
matrix [C ] to diagonal form. Under these assumptions, equation (2) can be rewritten as a
a scalar equation, composed of i-th vector components denoted by i and diagonal matrix
components denoted by ii .
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Equation (3) is conditionally stable, since it is limited by the time increment ∆t. This
restriction is known as the “Courant condition”.

In GeoFEM, the internal force is evaluated using equation (4) assuming a linear problem.
Here, [K] is the stiffness matrix of whole system, same as a linear static problem.

{p}(n) = [K]{u}(n) (4)

The method can be used to analyze linear wave propagation problems with high-speed com-
putation.

Parallel performance evaluation in large-scaled problem

Simple benchmark was executed to evaluate the performance of the wave propagation analysis
for a large-scale parallel problem[3]. The parallel computation was executed using in Hitachi
SR2201 of the University of Tokyo. Figure 1 shows the elapsed time measured by benchmark
analyses varying scale of analysis and PE count. The maximum DOF case gives a total node
count of 330 × 330 × 330 = 35, 937,000 or 107,811,000 DOF, that is, approximately 108

DOF.
Figure 2 shows the scalability of Sn by assuming the parallel efficiency is equal to the

rate of CPU usage: Wn. The figure shows nice scalability even though massive parallel
computation. For the largest scale problem (108 DOF, 1000PE) the rate of CPU usage was
calculated Wn=98.23% and speed-up Sn=982.
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Figure 1: Elapsed Time by Cubic Model
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Figure 2: Scalability



Non-reflecting boundary using viscous damping

Seismic wave propagation analysis using FEM is required non-reflecting boundary for side
or bottom of the model, because the area of mesh is finite. The viscous damping boundary
method[4] is one of the most efficient, due to the less of computation cost to realize several
proposed non-reflecting boundary method. The method is to replace the semi-infinite wave
propagation phenomena by the boundary viscous damping model approximately. Assuming a
passage of the wave at boundaries, the model gives proper stress components on the boundary.
At the three dimensional stress field, the boundary stress components was written by the
following equations, when incident wave consists of primary or secondary body waves and its
angle is expressed by θ from z-axis as figure 3.

σzz = aρVpu̇z (Primary wave) (5)

τzx = bρVsu̇x (Secondary wave) (6)

τyz = bρVsu̇y (Secondary wave) (7)
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Figure 3: Viscous Boundary Concept
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Figure 4: Effect of Viscous damping

ρ : density

Vp : P-wave velocity, Vp =
√

(1−ν)E
(1−2ν)(1+ν)ρ

, (E: modulus of elasticity)

Vs : P-wave velocity, Vs =
√

E
2(1+ν)ρ

, (ν: Poisson’s ratio)

u̇z, u̇x, u̇y, : velocity of z,x,y-direction respectively

Where a, b means non-dimensional parameters and the value of 1.0 is the most effective
to absorb the reflecting energy as the incident angle θ is not large[4]. In GeoFEM, following
lumped damping term is added to boundaries to produce boundary stress.

cii =
∫

aρVpds Primary wave, z direction (8)

cii =
∫

bρVsds Secondary wave, x or y direction (9)



Figure 4 shows verification result of viscous boundary by uni-axial lateral vibration problem
of a beam. Here a = 0.0 means free and a = ∞ means fixed terminal condition. As the
viscous boundary theory, a = 1.0 case controls wave reflection. Though the effectiveness of
this method depends on the incident angle in three-dimensional case and could not control
the surface wave.

Real-time visualization system: RVSLIB

The wave propagation analysis using explicit dynamic response method has to deal with huge
output data, because the scale of the analysis is relatively large due to small computation
cost, and it requires enormous time stepping due to small time increment. The real-time
visualization system (RVSLIB)[5] which is a commercial product of NEC Corporation, was
installed in GeoFEM to solve this kind of problem.

RVSLIB adapts client server system. RVSLIB/server library is linked to GeoFEM/analyzer
module. When the GeoFEM/analyzer is executed, RVSLIB/server generate the visualization
images simultaneously. These images can display by the RVSLIB/client in real-time though
the network, furthermore, RVSLIB/client can control analysis by client-server communica-
tion. The method is one of the solution for huge data transfer problem in separate execution
of analysis and post-processing, and it improves the usability by using tracking or steering
option especially large-scale analyses.

Conclusion

The present study, we focused on the wave propagation analysis of the GeoFEM system. The
formulation, parallel performance and installation of non-reflecting boundary and RVSLIB
have been described. In conclusion, due to the present extension, the GeoFEM wave prop-
agation analysis function becomes applicable for realistic seismic problem to simulate solid
earth phenomena.
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